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CQOVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)
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Overview
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e COVID-19 confirmed cases have
been increased but not doubled
since our last meeting



In the case of Italy:
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Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)
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Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)
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Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins ...
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Today: Overview

Today:
1. Time series data
2. Markov Chains
3. HMM

Recall: Last time, we covered
1. NMF (Non-negative Matrix
Factorization)
2. LSA (Latent Semantic Analysis)

e https://math189covid19.github.io/



https://math189covid19.github.io/

What is a Time series (data)?

* A time series is a series of data points
indexed (or listed or graphed)

in time order.

"Month","Sales"
"1960-01",6550
"1960-02",8728

Most commonly, a time series is a 11960-03",12026

1960-04",14395

sequence taken at successive equally  1so-0s", 14567

'1960-06",13791

spaced points in time. '1960-07",9498

"1960-08",8251

* Thus it is a sequence of discrete- " 1960-10" 9545

time data.

25000 A

20000 A

15000 A

10000 A

5000 A

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

"1960-11",9364
"1960-12",8456
"1961-01",7237

This dataset is "1961-02",9374
monthly and has "1961-03",11837
. "1961-04",13784
nlne years, OI’ 108 "1961—05",15926
observations. In "1961-06",13821
testi " "1961-07",11143

our testing, will use "1961-08" 7975

the last year, or 12 "1961-09",7610

"1961-10",10015

observations, as "1961-11",12759

the test set.

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly car-sales.csv



https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv

1 # load
2 series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

Once loaded, we can summarize the shape of the dataset in order to determine the number
of observations.

1 # summarize shape
2 print(series.shape)

We can then create a line plot of the series to get an idea of the structure of the series.

1 # plot
2 pyplot.plot(series)
3 pyplot.show()

We can tie all of this together; the complete example is listed below.

1 # load and plot dataset

2 from pandas import read_csv

3 from matplotlib import pyplot

4 # load

5 series = read_csv('monthly-car-sales.csv', header=0, index_col=0)
6 # summarize shape

7 print(series.shape)

8 # plot

9 pyplot.plot(series)

10 pyplot.show()




Stock data is time series data
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Task example: Find patterns in stock time series data

(O Australian Dollar - US Dollar (0.86160, 057150, 0.85140, 0.86960, +0.00820)
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Markov Chains

* Well known example: predict weather

In our simplified universe, the weather can only
be in one of 2 possible states, “sunny” or “rainy”.

* The catch (in the context of Markov chains) is
that the probability of it being sunny or
rainy tomorrow, depends on whether it is sunny
or rainy today.

 WEe'll derive these probabilities from past data,
and construct a transition matrix.



Using the historic data to build a
transition matrix
* Here we use 7 days of historical data on which

to “train” our Markov chain. The days are:
[rain, sun, rain, sun, rain, rain, sun]|

7~

wo W™

RSRSRRS

https://towardsdatascience.com/predicting-the-weather-with-markov-chains-a34735f0c4df



https://towardsdatascience.com/predicting-the-weather-with-markov-chains-a34735f0c4df

Now calculate the percentage of instances its sunny on days directly

following rainy days.

w0 rowmw o
A A

A A

3/4 so 75%.



Now calculate the percentage of instances its rainy on days directly

following sunny days.
Towowm®o
0,0 DT a0 DT a0 a0 T
O | b | b b |
A L



We’ll build our transition matrix with that information, inferring missing

percentages from the information we’ve already derived (rain-after-rain =
25% and sun-after-sun = 0%).

Transition Matrix

tomorrow

S R

today S 0 1

R 0.75 0.25




The Markov Chain

tomorrow
1007
S R

R = rainy, S = sunny today S 0 1

R 0.75 0.25

This diagram hits home the fact that probabilities are completely dependent

on the current state, not the weather yesterday or the day before that.



Example 1:
The previous 3 days are [rainy, sunny, rainy].

What’s the probability of rainy weather tomorrow?

o w O

R,S,R

Based on our previously trained model. Tomorrow has a 75% chance of sun

and 25% chance of rain.



Example 2:

The previous 2 days are [rainy, rainy].

RR

Again, tomorrow has a 75% chance of sun and 25% chance of rain.



Example 3:

The previous 3 days are [sunny, rainy, sunny].

There is a 100% chance of rain tomorrow. It always rains on days after

sun... sad I know...



Suppose we get the transition matrix
with lots lots of data

The matrix P represents the

° Say 0.9 0.1 weather model in which a sunny
P = day is 90% likely to be followed
i 0.5 0.5 i by another sunny day, and a

rainy day is 50% likely to be
followed by another rainy

day. The columns can be labelled
"sunny" and "rainy", and the rows

can be labelled in the same
order.

The above matrix as a graph.



Definition: stochastic matrix

(P); jis the probability that, if a given day is of type |,
it will be followed by a day of type /.

Notice that the rows of P sum to 1: this is because P

0.19

IS a stochastic matrix.




Predicting the weather

The weather on day 0 (today) is known to be sunny. This is represented by a
vector in which the "sunny" entry is 100%, and the "rainy" entry is 0%:

x(0) = 1 0]
The weather on day 1 (tomorrow) can be predicted by:
0.9 0.1
x =xOp=1[1 0] ] =10.9 0.1]
0.5 0.5

Thus, there is a 90% chance that day 1 will also be sunny.

The weather on day 2 (the day after tomorrow) can be predicted in the same way:

0.9 0.1

X — <P —xVP* (1 0]
0.5 0.5

r —[0.86 0.14]



Iterative process

or

0.9 0.1

x¥ =xWP =109 0.1] [
0.5 0.5

] —[0.86 0.14]

General rules for day n are:
x(M) — x(0) pn



The steady state vector is defined as:

q = lim x™
n—oo

but converges to a strictly positive vector only if P is a regular transition matrix (that is,
there is at least one P with all non-zero entries).

Since the q is independent from initial conditions, it must be unchanged when
transformed by P.[*] This makes it an eigenvector (with eigenvalue 1), and means it can
be derived from P.l4! For the weather example:

P 0.9 0.1
0.5 0.5
qP = q (q is unchanged by P.)

q(P—-I)=0



(22 2212 ) -

-01 017 _
Uos —o05]"
—0.1 0.1
=[0 0
@ g 05 05 [ ]

—0.1q; + 0.5, =0

and since they are a probability vector we know that

q1 +q2 = 1.

Solving this pair of simultaneous equations gives the steady state distribution:

[q1 QQ] — [0833 0167]

In conclusion, in the long term, about 83.3% of days are sunny.



Similarly you can use Markov Chains to predict stock trends

Stock market |[edit]

A state diagram 0.075
for a simple

example is shown 0.9 0.8
in the figure on
the right, using a
directed graph to

picture the state

transitions. The

Stagnant
market

states represent

whether a
hypothetical stock
market is
exhibiting a bull

market, bear _

Using a directed graph, the probabilities of the possible states a =
hypothetical stock market can exhibit is represented. The matrix on the
stagnant market left shows how probabilities corresponding to different states can be

trend during a arranged in matrix form.

market, or

given week.

https://en.wikipedia.org/wiki/Examples of Markov_chains



https://en.wikipedia.org/wiki/Examples_of_Markov_chains

Exercise

* Please write out the stochastic matrix using
the above graph (called a probability graphic
model).



In real life modeling, often the
situation is much more complicated

 We need to consider global economic
environment.

* There are a lot of hidden things which are not
directly observable.



Study two examples on Wikipedia

https://en.wikipedia.org/wiki/Hidden Markov model

al2 a23
X1 a2l X2 X3
b22 b32
b12 b31 b33
bil b34
b21
\ & b1214 b24 \
" \

yl y2 y3 y4

/ . - - 'V . ‘3/ T~ ~ o - \
Figure 1. Probabilistic parameters of a hidden = ' /
Markov model (example) Walk /
X — states

y — possible observations
a — state transition probabilities
b — output probabilities


https://en.wikipedia.org/wiki/Hidden_Markov_model

Hidden Markov Models

* Look an example on Wikipedia:

https://en.wikipedia.org/wiki/Hidden Markov
model

A = (a;)
= Transition Matrix @ @ @

b32

B = (by) bl2 ‘ b33
= Emission Matrix. \ ‘

b21 b14
b13



https://en.wikipedia.org/wiki/Hidden_Markov_model

Hidden Markov Models
P
OJOZOM

e Work out details with students on iPAD.

e Please see the detailed notes of HMM that |
sent to you in email.



HMM is a typical example of a
Probabilistic Graphical Model

What is a probabilistic
Graphical Model?

A probabilistic graphical
model (PGM) is a probabilistic
model for which

a graph expresses

the conditional
dependence structure
between random variables.
They are commonly used

in probability

theory, statistics—
particularly Bayesian
statistics—and machine

learning.

Recall: F: X =2 Y.

We say Y is a function of X, i.e. Y depends on X.

Note: the arrow starts from X and endson Y.

An example of a graphical model.
Each arrow indicates a
dependency. In this example: D
dependson A, B, and C; and C
depends on B and D; whereas A
and B are each independent.

Note: there are 3 arrows starts from A, B, C and

ends on D. This means D depends on A, B, and
C.


https://en.wikipedia.org/wiki/Probabilistic_model
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Conditional_dependence
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Machine_learning

Why using Probabilistic Graphical
Models

* Generally, probabilistic graphical models use a
graph-based representation as the foundation
for encoding a distribution over a multi-
dimensional space and a graph that is a
compact or factorized representation of a set
of independences that hold in the specific
distribution.



https://en.wikipedia.org/wiki/Factor_graph

Recall: Chain rule for random
variables

Two random variables |edit]

For two random variables X, Y, to find the joint distribution, we can apply the definition of conditional
probability to obtain:

P(X,Y) = P(X]Y) - P(Y)

More than two random variables |edit]

Consider an indexed collection of random variables X1, ..., X,, . To find the value of this member of the
joint distribution, we can apply the definition of conditional probability to obtain:

P(Xn,...,X1) =P(Xu|Xp_1,..., X1) - P(Xp1,...,X1)

Repeating this process with each final term creates the product:

P (ﬁXk> :,ﬁ[lP (Xk jdX])




Recall: Probability Chain Rule for

Fuantg

The chain rule for two random events A and B says
P(ANB) = P(B| A)- P(A).

For more than two events A1, ..., A, the chain rule extends to the formula
P(A,N...NA;)=P(A4,|A,-1N...NA;) -P(A,-1 N...NAp)

which by induction may be turned into

n k-1
P(A,N...NA) =]]P (Ak ﬂAj>.
k=1 j=1

Example [edit]

With four events (n = 4), the chain rule is

P(AsN A3 NAy NA) =P(Ay | A3 N Ay NAy)-P(As N Ay N Ar)
—P(Ay | A3 N As N A1) -P(As | Ay N A1) -P(4y N Ay)
—P(Ay | As N As N Ay)-P(As | Ay N Ay) - P(Ay | A;) - P(A;)



HMM is a typical example of
Directed Acyclic Graph (DAG)

A DAG is a finite directed

graph with no directed cycles.
That is, it consists of finitely
many vertices and edges (also
called arcs), with each edge
directed from one vertex to
another, such that there is no
way to start at any vertex v and
follow a consistently-directed
sequence of edges that
eventually loops back to v again.
Equivalently, a DAG is a directed
graph that has a topological
ordering, a sequence of the
vertices such that every edge is
directed from earlier to later in
the sequence.



https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Topological_ordering

There are many applications of DAG:
Radar and Aircraft Control

@ Modeling multiple planes and radar signals:




HMM and Directed Acyclic Graphical
(DAG) Prob. Models

DAG models use a factorization of the joint distribution,

d
p(x1, 22, - .., 2q) = | | p(@5]pa(s));
j=1
where pa(j) are the “parents” of node j.

This assumes a Markov property (generalizing Markov property in chains),

p(zj|1:5-1) = P(Tj|Tpa(j)),



Note: Also can factor into
blocks

Instead of factorizing by variables 7, could factor into blocks b:

p(z) = Hp(xb | xpa(b))a
b

and have the nodes be blocks.
e Usually assuming full connectivity within the block.

We will work out an example on HMM using iPAD on how to factor into blocks after the slides.



Review of Independence

@ Let A and B are random variables taking values a € A and b € B.

@ We say that A and B are independent if we have

p(a,b) = p(a)p(b),

for all a and b.
@ To denote independence of x; and z; we use the notation
xI; 1 Zj.

@ In a product of Bernoullis, we assume x; L x; for all < and j.



Review of Independence

@ For independent a and b we have

_ pla,b)  p(a)p(b)

al|b)= = = pl(a).
pa] b) = P55 = PO = p(a)
@ This gives us a more intuitive definition: A and B are independent if
p(a | b) = p(a)

for all @ and b # 0.
o In words: knowing b tells us nothing about @ (and vice versa).
o This will tend to simplify calculations involving a.

o Useful fact: a L b iff p(a,b) = f(a)g(b) for some functions f and g.



Conditional Independence

@ We say that A is conditionally independent of B given C' if

p(a,b|c)=pla|c)p(b]c),

for all @, b, and ¢ # 0.
e Equivalently, we have
p(a|b,c)=p(a|c).
@ “If you know C, then also knowing B would tell you nothing about A"’.
e In mixture of Bernoullis, given cluster there is no dependence between variables.

@ We often write this as
ALl B|C.

@ In a mixture of Bernoullis, we assume z; L z; | z for all ¢ and j.
o This simplifies calculations involving z; and z;, provided that we know 2.



Extra Conditional Independences in
Markov Chains

@ In Markov chains, the Markov assumption is z; L z1,z2,...,2,-2 | zj_1,

p(zj | zj—1,xj—2,...,21) = p(x; | zj-1).

@ But note that this also implies the additional conditional independence that

p(x; | Tj—2,Tj—3,...,21) =p(x; | j_2).
@ We can use this property to easily compute p(z; | z;_2,%;_3,...,%1):

P(Ej | Tj—2,Tj—3,--- T1) = p(g;j | -'Ej—2)

= > plzj,zj_1|zj_2)

= > plzj|zj_1,zj_2)p(zj—1 | z;_2)
:EJ_l

= > plzjlzj—1)p(zj—1|zj—2).

EJ_]_‘ v~ v~

tran prob tran prob



DAGs and Conditional Independence

Conditional independences can substantiall simplify inference.

But it's tedious to formally show that the above are true.
o See the last slide, and the EM notes.

In DAGs we make the conditional independence assumption that

p(CL’j | Lj—1,Lj—2y--- ,371) - p(.’L’j | fl;pa(j))-

Is there an easy way to find out what other independences are ture?
o If so, we could quickly find out which calculations are easy to do in a given DAG.



D-Separation: From Graphs to Conditional Independence

All conditional independences implied by a DAG can be read from the graph.

In particular: variables A and B are conditionally independent given C if:

e "D-separation blocks all undirected paths in the graph
from any variable in A to any variable in B."

In the special case of product of independent models our graph is:

O ® @ -

Here there are no paths to block, which implies the variables are independent.

Checking paths in a graph tends to be faster than tedious calculations.
e We can start connecting properties of graphs to computational complexity.



D-Separation as Genetic Inheritance

@ The rules of d-separation are intuitive in a simple model of gene inheritance:
e Each person has single number, which we'll call a “gene”.

e If you have no parents, your gene is a random number.
o If you have parents, your gene is a sum of your parents plus noise.

@ For example, think of something like this:

e Graph corresponds to the factorization p(x1, z2, z3) = p(z1)p(z2)p(zs | 1, 22).
o In this model, does p(z1,x2) = p(z1)p(x2)? (Are z1 and x5 independent ?7)



D-Separation as Genetic Inheritance

@ Genes of people are independent if knowing one says nothing about the other.

@ Your gene is dependent on your parents:
e If | know you your parent’s gene, | know something about yours.

@ Your gene is independent of your (unrelated) friends:
o If know you your friend's gene, it doesn't tell me anything about you.

@ Genes of people can be conditionally independent given a third person:

e Knowing your grandparent’s gene tells you something about your gene.
e But grandparent’s gene isn't useful if you know parent’s gene.



Hidden Markov Models

e Work out details with students on iPAD.

e Please see the detailed notes of HMM that |
sent to you in email.
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