Math $189 Z$

Lecture 1: Overview and Linear Regression

COVID-19: Data Analytics and Machine Learning

PROF. WEIQING GU
SPRING 2020

Overview

- Course description
- Syllabus
- Schedule
- Term project
- Homework
- Course Resources
- https://math189covid19.github.io/

COVID-19: Data Analytics and Machine Learning
PROF. WEIQING GU
SPRING 2020

COURSE DESCRIPTION

This is a special topics course responding to the coronavirus pandemic. We will employ big data analytics and machine learning (ML) techniques to process, identify key data features, infer, predict, integrate, classify, and extract unique insights from the COVID-19 Open Research Dataset. This open dataset brings together nearly 30,000 scientific articles about the virus known as SARS-CoV-2 as well as related viruses in the broader coronavirus group, and it contains the most extensive collection of machine readable coronavirus literature to date. Math189Z is a project-based online course using the materials selected from this dataset. Some of the project goals include helping the science community to understand data genetics, incubation, and symptoms or helping fill some gaps when scientists are pursuing knowledge around prevention, treatment and a vaccine. Additionally, another goal of this course is to become comfortable using GitHub as this tool is extremely prevalent in industry and academia when developing and deploying models. To that end, all code, reading summaries, and your final project will be hosted on GitHub. Background in calculus and/or linear algebra required. HMC students may add without a PERM. Off-campus students should submit a PERM, including a description of their math coursework completed or underway.

You may find your homework assignments on the link below

- https://math189covid19.github.io/resources.h tml

COVID-19 Spread Status

- COVID-19 confirmed cases have been increased since our last meeting

- It is an exponential spread now
- How to mathematically quantify the spread?

Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)

(23) Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins ...

Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (... \equiv
Total Confirmed
10

Confirmed Cases by Country/Region/Sovereignty

81,058 China
27,980 Italy

16,169 Iran
11,309 Spain
3,604 Germany
8,320 Korea, South
6,664 France
5,204 US

2,700 Switzerland
1,960 United Kingdom
1,708 Netherlands
1,443 Norway
1,332 Austria
1,243 Belgium

1,190 Sweden
1,024 Denmark
〔 Country/Region/Soverei... D
Last Updated at (M/D/YYYY)
3/17/2020, 9:33:04 AM

o

(
7,516
3,111 deaths Hubei China
2,158 deaths
Italy
988 deaths
Iran
509 deaths
Spain
148 deaths
France France
81 deaths
Korea, South
55 deaths
United Kingdom United Kingdom

48 deaths
Washington US

Total Recovered
80,643
56,003 recovered
Hubei China
5,389 recovered
Iran
2,749 recovered
Italy
1,407 recovere Korea, South

1,307 recovered
Guangdong China
1,250 recovered
Henan China
1,216 recovered
Zhejiang China
1,028 recovered
Spain
1,014 recovered

Actual Logarithmic Daily Cases

What do we mean by exponential spread?

- Today's number new infected
- Yesterday's number new infected
- Let $r=$ Today's number new infected/Yesterday's number new infected
- Now if $r>1$, then it is exponential

Notice: Each piece is different in increasing

Our goal: Mathematically quantify the difference and let ML auto learn it

- Example

 duthor: Ceert Eavmaeng̈rervis filcers-ubl

The exponential spread of the Ebola virus

Trick:

Build a logarithmic model from data ...

Machine Learning \& Big Data Analytics will be covered in this course

This course will cover several major approaches in ML/Data Analytics

- Regression
- MM and HMM
- Neural Network (e.g. RNN)
- Other approaches: most needed in your term projects
- For more systematic Machine Learning and Big Data Analytics methods, I will cover them this summer after the core summer course in
- Math 189L: Mathematics of Big Data, I.

Today's Lecture

- Frist: Overview COVID-19 Spread Status
- Second: Use linear regression as an example to analyze big data including COVID-19 data.

Note: Linear regress techniques could be generalized to

- Polynomial Regression
- Piecewise Linear Regression
- Other type of regression including transform data first, then use linear regression and then transform them back.

1. Statistical Calculus Approach
(Classical Least Square Approximation)
Apse we have data pts $\left(x_{i}, y_{i}\right)$ and want to find the live $y=m x+b$ which best describes the data.

The problem boids down to find $m \& b$. Theervor between one point and the line is

$$
e_{i}=y_{i}-\left(m x_{i}+b\right)
$$

Our objective is

minimizing the total error.

- However, the errors e_{i}, some could be positive and some could be negative. A simple sum of the errors would not work well.
- Can you think about an example why not working well?
- How to fix this problem?
- Instead we consider the following objective or cost function:
L_{2} norm
- $J(m, b)=\sum\left(e_{i}\right)^{2}=\sum\left(y_{i}-m x_{i}-b\right)^{2}$
- Can we use $\sum\left|\mathrm{e}_{\mathrm{i}}\right|$ instead?

Goal: Find m and b to minimize the cost function J

- How?
- Set all partials equal to zero!
- Work out the details with the students on the board.

Obtained solution using Cramer's rule

- Give a linear system:

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

- Write it into matrix form: $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$

Assume the coefficient matrix is invertible, i.e. the det $=a_{1} b_{2}-b_{1} a_{2}$ is nonzero. Then

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}=\frac{c_{1} b_{2}-b_{1} c_{2}}{a_{1} b_{2}-b_{1} a_{2}}, \quad y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}=\frac{a_{1} c_{2}-c_{1} a_{2}}{a_{1} b_{2}-b_{1} a_{2}} .
$$

Close formula for Least Square Approximation
Using Cramer's rule, we get solution form, b :

$$
\begin{aligned}
& m=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\
& b=\frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}\right)-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}
\end{aligned}
$$

But the formula is massy. Next we'll find a compact form of this formula.

Homework problem

- Given 4 points as below: $(0,1),(2,3),(3,6),(4,8)$
a) Find $y=m x+b$ based on Cramer's rule.
- Hint:

- b) Use the normal formula to find the solution and compare it with that of a).
- c) Plot the data points, and draw $y=m x+b$.
- d) (All by coding) Find another 100 points near the line $y=m x+b$. Then find the least square approxim' n again $\&$ plot both the data points \& the new line.

Piecewise linear regression

- Piecewise linear regression is a form of regression that allows multiple linear models to be fitted to the data for different ranges of X.
- The regression function at the breakpoint may be discontinuous, but it is possible to specify the model such that the model is continuous at all points.

Intuition: Piecewise linear regression

Example1

Example 2

Machine Learning: Polynomial Regression

- First do a data visualization

Example

Start by drawing a scatter plot:

```
import matplotlib.pyplot as plt
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90, 80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]
plt.scatter(x, y)
plt.show()
```

The data is nonlinear. We can use polynomial regression.

Note: You always can use piecewise linear regression.

Decide a degree k of the polynomial

- Here k=3

Import numpy and matplotlib then draw the line of Polynomial Regression:

```
import numpy
import matplotlib.pyplot as plt
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100, 90, 80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))
myline = numpy.linspace(1, 22, 100)
plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()
```


Machine Learning: Polynomial Regression

- First do a data visualization

Note: Such a polynomial piece of degree 3 is called a cubic spline.

What had happened behind this code mathematically?

- Work out details with students on iPad.

How about fit data by a plane or even higher dimensions?

mtcars

Get the same close solution by normal equation!

- Can you imagine what other cases you would get the same kind of solution?

Normal Equation for Least Square Approximation

- i.e. Representing the Least Square Solution in Matrix Form
- Work out the details with the students on the board.
- Recall the product rule:
- $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}: \quad(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$
- $\mathrm{f}, \mathrm{g}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}: \quad \nabla(f \cdot g)=\nabla f \cdot g+f \cdot \nabla g$
- $\mathbf{f}, \mathbf{g}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}: \quad(\mathbf{f} \cdot \mathbf{g})^{\prime}=\mathbf{f}^{\prime} \cdot \mathbf{g}+\mathbf{f} \cdot \mathbf{g}{ }^{\prime}$

$$
\theta=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

Taking Partial Derivatives for different Types of functions
Type 1: $\mathbb{R} \rightarrow \mathbb{R}$ (one-to-one)
$\frac{3 f}{\frac{2}{x}}=\frac{d f}{\frac{d}{x}}$

($\left.\frac{\partial f}{\partial x_{1}} \frac{2 f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)$ dene mad
$\nabla f(\vec{a})=\left(\left.\frac{\partial f}{\partial x_{a}}\right|_{\vec{t}},\left.\frac{\partial f}{\partial x_{a}}\right|_{\vec{a}}, \cdots,\left.\frac{\partial f}{\partial x_{k}}\right|_{\vec{a}}\right)$
is called the gradient of f at \vec{a}.

You must
keep your
mind
clear
what type of function your are dealing with!

Again we get the same solution!

$$
\theta=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

Q: But what's wrong if we use Cramer's rule to solve it?
Or directly use the formula by finding the inverse $X^{T} X$?

Big Picture:

Analytic Approaches Summarized

- Use "linear regression" as an example to give an overview of big data analytics

Modeling Approaches:
 - Statistical calculus
 - Geometric analytic
 - Probabilistic
 Each has its own merit

2. Geometric Analytic Approach (Geometric Least Square)

- Work out the details with the students on the board.

Key in Geometric Least Square Approximation

3. Probabilistic Approach (Maximal Likelihood)

- Work out the details with the students on iPad if time permits.

